Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper.
نویسندگان
چکیده
Impaired uptake of cisplatin (DDP) consistently accompanies the acquisition of resistance to the platinum drugs. The pathways by which DDP enters or exits from cells remain poorly defined. Using three pairs of human ovarian carcinoma cell lines, each consisting of a sensitive parental line and a stably DDP-resistant subline derived by in vitro selection, resistance to DDP was found to be accompanied by cross-resistance to Cu. Accumulation of DDP in the resistant sublines ranged from 38 to 67% of that in the parental line at 1 h, and DNA adduct formation varied from 10 to 38% of that in the sensitive cells. The DDP-resistant cells had 22-56% lower basal levels of copper, and the copper levels were only 27-46% of those observed in the sensitive parental lines after a 24-h exposure to medium supplemented with copper. The initial influx rate for DDP in the three resistant cell lines ranged from 23 to 55% of that in the sensitive cells of each pair; the initial influx rate for copper in the resistant cells varied from 56 to 75% of control. Studies performed using one pair of cell lines demonstrated that for both copper and DDP the initial efflux rate was lower, whereas the terminal efflux rate was higher in the resistant cells. On Western blot analysis all three resistant lines exhibited increased expression of one or the other of the two copper export pumps (ATP7A or ATP7B) with no change in the HAH1 chaperone. We conclude that the acquisition of DDP resistance in ovarian carcinoma is accompanied by alterations in the cellular pharmacology of DDP that are paralleled by similar changes in the uptake and efflux of copper. These results are consistent with the concept that DDP enters and exits from the cell via transporters that normally mediate copper homeostasis.
منابع مشابه
Intracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells
One of the major complications in cancer chemotherapy is the development of resistance, and cisplatin, as one of the important medicines in treatment regimens of different cancers is not excluded. One of the most described cellular defense mechanisms involved in resistance is glutathione (GSH) and in this study, the effects of cisplatin on the total intracellular GSH level (GSHi) in some sensit...
متن کاملIntracellular GSH Alterations and Its Relationship to Level of Resistance following Exposure to Cisplatin in Cancer Cells
One of the major complications in cancer chemotherapy is the development of resistance, and cisplatin, as one of the important medicines in treatment regimens of different cancers is not excluded. One of the most described cellular defense mechanisms involved in resistance is glutathione (GSH) and in this study, the effects of cisplatin on the total intracellular GSH level (GSHi) in some sensit...
متن کاملGeneration of Cisplatin-Resistant Ovarian Cancer Cell Lines
Ovarian cancer is the most lethal gynecological cancer in which cisplatin-based treatment plays fundamental role as the first line chemotherapy option. However, development of platinum-resistance is a critical and poorly understood problem in ovarian cancer treatment. Although in vitro generation of platinum-resistant ovarian cancer cell lines is a long established approach to uncover the molec...
متن کاملThe copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells.
Cells selected for resistance to cisplatin are often cross-resistant to copper and vice versa, and the major copper influx transporter copper transport protein 1 (CTR1) has been shown to regulate the uptake of cisplatin, carboplatin, and oxaliplatin in yeast. To further define the role of hCTR1 in human tumor cells, the ovarian carcinoma cell line A2780 was molecularly engineered to increase ex...
متن کاملSensitization of Resistance Ovarian Cancer Cells to Cisplatin by Biogenic Synthesized Silver Nanoparticles through p53 Activation
Today, drug resistance is one of the major problems in fight against cancer. Therefore, combination of therapeutic strategies was raised to effectively improve disease prognosis. In this regard, silver nanoparticles (AgNPs) are considered significant due to their anticancer properties. This study aimed to return sensitivity to cisplatin to A2780 cisplatin-resistance cell lines in the presence o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 62 22 شماره
صفحات -
تاریخ انتشار 2002